Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells
نویسندگان
چکیده
Nickel foam (NF), stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated stainless steel mesh (MoS2) electrodes have been proposed as catalysts for hydrogen gas production, but previous tests have primarily examined their performance in well buffered solutions. These materials were compared using twochamber microbial electrolysis cells (MECs), and linear sweep voltammetry (LSV) in unbuffered saline solutions at two different initial pHs (7 and 12). There was generally no appreciable effect of initial pH on production rates or total gas production. NF produced hydrogen gas at a rate of 1.1 m H2/m $d, which was only slightly less than that using Pt (1.4 m H2/m $d), but larger than that obtained with SSW (0.52 m H2/m $d) or MoS2 (0.67 m 3 H2/m $d). Overall hydrogen gas recoveries with SSW (29.7 0.5 mL), MoS2 (28.6 1.3 mL) and NF (32.4 2 mL) were only slightly less than that of Pt (37.9 0.5 mL). Total energy recoveries, based on the gas produced versus electrical energy input, ranged from 0.75 0.02 for Pt, to 0.55 0.02 for SSW. An LSV analysis showed no effect of pH for NF and Pt, but overpotentials were reduced for MoS2 and SSW by using an initial lower pH. At cathode potentials more negative than 0.85 V (vs Ag/AgCl), NF had lower overpotentials than the MoS2. These results provide the first assessment of these materials under practical conditions of high pH in unbuffered saline catholytes, and position NF as the most promising inexpensive alternative to Pt. Copyright a 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights
منابع مشابه
Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions
Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...
متن کاملNone-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...
متن کاملNone-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...
متن کاملMineralization of Ofloxcacin Antibiotic in Aqueous Medium by Electro-Fenton Process using a Carbon Felt Cathode: Influencing Factors
The aim of this work is to study the degradation and mineralization of antibiotic ofloxacin in aqueous medium using the Electro-Fenton method as advanced oxidation technology. In this context, Pt/carbon-felt cell was used to investigate the influence of various parameters including initial pH, different supporting electrolytes, different metal ions as a catalyst and antibiotic concentration ove...
متن کاملOptimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells
The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3.3 0.4 mol H2/mole acetate and gas production rate of 2.2 0.2 m H2/m/d were achieved here with an initial anolyte pH 1⁄4 9 and catholyte NaCl concentrati...
متن کامل